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Abstract. We investigate the branching ratios and direct CP -asymmetries of the B+
c → D0π+ and

B+
c → D+π0 decays in the PQCD approach. All the diagrams with emission topology or annihilation

topology are calculated strictly. A branching ratio of 10−6 and 10−7 for B+
c → D0π+ and B+

c → D+π0

decay is predicted, respectively. Because of the different weak phase and strong phase from penguin
operator and two kinds of tree operator contributions, we predict a possible large direct CP -violation:
Adir

CP (B±
c → D0π±) ≈ −50% and Adir

CP (B±
c → D±π0) ≈ 25% when γ = 55◦, which can be tested in the

coming LHC.

PACS. 13.25.Hw, 12.38.Bx

1 Introduction

The charmless B decays provide a good platform to test the
standard model (SM) and study the CP -violation, which
arouses great interest and has been discussed in the liter-
ature widely. But how about the Bc decays, the b quark
of which has properties similar to the B meson? There are
some events of Bc at Tevatron [1] and there will be a great
number of events appearing at LHC in the foreseeable fu-
ture. The progress of the experiments leads us to think of
the question: what will be the theoretical prediction on the
two-body non-leptonic Bc decays?

Different from the B and Bs meson, the Bc meson
consists of the two heavy quarks b and c, which can decay
individually. Because of the difference of mass, lifetime
and the relative CKM matrix element between b and c
quark, the decay rate of the two quarks is different, which
determines the unique property of Bc decays. Though the c
quark’s mass is about one third of the b quark, leading to a
suppression of (Mc/Mb)5, the decay of the c quark cannot
be ignored because the corresponding CKM matrix element
Vcs is larger than that of the b quark: Vub, Vcb. Because of
the small mass of the c quark, the decay of the c quark is
nearly at the non-perturbative scale, where there is a great
theoretical difficulty. Now we study the b quark decay first
and leave the study of the c quark decay to the future.

In recent years, great progress has been made in study-
ing two-body non-leptonic B decays in the perturbative
QCD approach (PQCD) [2, 3], QCD factorization [4] and
soft collinear effective theory (SCET) [5]. Though Bc decay
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Fig. 1. Form factor in Bc → Dπ

has been studied [6] in the naive factorization approach [7,8]
many years ago, no one applies the method developed re-
cently in such processes. In this paper we will use Bc → Dπ
as an example to discuss the Bc decays in the PQCD ap-
proach.

The Bc → Dπ decay provides opportunities to study
the direct CP -asymmetry. Different from the B decays [3],
Bc → Dπ has a direct CP -asymmetry even without con-
sidering the contributions from penguin operators, because
the tree contributions from the annihilation topology pro-
vide not only the strong phase, but also the different weak
phase. According to the power counting rule of PQCD, the
tree contributions from the annihilation topology is power
suppressed. But the larger CKM matrix elements |Vcb| en-
hance the contribution making it larger than the penguin
contributions, so the direct CP -asymmetry of Bc → Dπ
can be very large, which is found in our numerical analysis.

The study of Bc decay also provides opportunities to
test kT factorization in the PQCD approach. According
to the numerical analysis in the literature, the form factor
contributions from Fig. 1 usually dominate the whole de-
cay. In the same way, the form factor also gives the main
contributions in the Bc → Dπ decay according to our nu-
merical analysis. Since the Bc meson consists of two heavy
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quarks, the effect of kT in the Bc meson can be ignored and
the form factor Bc → D only includes the kT contributions
from the D meson. So it is easier to study how important
the kT contributions are in Bc decays than in B decays
because the latter need to consider both kT contributions
of B and D meson.

The Bc → Dπ decay also provides a good platform
to study the D meson’s wave function. The D meson’s
mass MD is not so large that it is hard to get the ideal
wave function of D meson by the expansion of 1/MD as in
the B meson. One uses the form fitted from experimental
data generally. Such a discussion has been given by [9]
in the form factor of the B → D transition. It is better
to discuss the D meson wave function in Bc → Dπ for
two reasons: one is that the hierarchy between MBc and
MD (MBc

� MD) guarantees us that we may apply the
kT factorization theorem in this process; the other one is
that the wave function of Bc is clean, which eliminates the
possible uncertainty from the Bc meson. The experiment
of Bc decays will test how reasonable this is. As the only
parameter with a large uncertainty, the wave function of
D meson need further theoretical investigation.

2 Framework

The hard amplitudes of these decays contain factorizable
diagrams (Fig. 1), where hard gluons attach the valence
quarks in the same meson, and non-factorizable diagrams
(Fig. 2), where hard gluons attach the valence quarks in dif-
ferent mesons. The annihilation topology is also included,
and classified into factorizable (Fig. 3) and non-factorizable
(Fig. 4) ones according to the above definitions.

In the calculations of all the diagrams, we can ignore
the kT contributions of Bc meson because it consists of two
heavy quarks. Furthermore, we can suppose the two quarks
b̄ and c of B+

c meson to be on the mass shell approximately
and treat the wave function of Bc meson as δ function for
simplicity, so we can integrate the wave function Bc out
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Fig. 2. Non-factorizable emission topology in Bc → Dπ
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Fig. 3. Factorizable annihilation topology in Bc → Dπ
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Fig. 4. Non-factorizable annihilation topology in Bc → Dπ

and the kT factorization form turns into

Form factor (1)

∼
∫

d4k1 ΦD(k1) C(t) H(k1, t),

Other topology (2)

∼
∫

d4k1d4k2 ΦD(k1)Φπ(k2) C(t) H(k1, k2, t),

where k1(2) is the momentum of the light (anti-) quark of
the D(π) meson. The non-factorizable topology includes
two kinds of topology: the emission topology (Fig. 2) and
the annihilation topology (Fig. 4). In the above equations,
we sum over all Dirac structure and color indices. The
hard components consist of the hard part (H(t)) and the
harder dynamics (C(t)). The former H(t) can be calculated
perturbatively; the latter C(t) is for the Wilson coefficients
which run from the electroweak scale MW to the lower
factorization scale t. ΦM is the wave function of the D and
π meson, including the non-perturbative contributions in
the kT factorization.

Throughout this paper, we use the light-cone coordi-
nate to describe the meson’s momentum in the rest frame
of the Bc meson. According to the conservation of four-
momentum, we get the momentum of the three mesons Bc,
D and π up to the order of r2

2 (r2 = MD/MBc) as follows:

PBc =
MBc√

2
(1, 1,0T),

P2 =
MBc√

2
(1, r2

2,0T),

P3 =
MBc√

2
(0, 1 − r2

2,0T), (3)

where we have neglected the small mass of the pion and
higher order terms of r2. Such an approximation will be
used in the whole paper.

3 Calculation of amplitudes

3.1 Wave function

The Bc meson consists of two heavy quarks such that the
small Λ̄QCD can be ignored (Λ̄QCD = MBc −Mb−Mc � Mc

or Mb), as can the quark transverse momentum kT. In
principle there are two Lorentz structures in the B or Bc



Jian-Feng Cheng et al.: Study of Bc → Dπ in the perturbative QCD approach 713

meson wave function. One should consider both of them in
calculations. However, it can be argued that one of the con-
tributions is numerically small [10], thus its contribution
can be neglected. Therefore, we only consider the contri-
bution of one Lorentz structure, such that we can reduce
the number of input parameters:

ΦBc(x) =
i

4Nc
(/pBc + MBc) γ5 δ(x − Mc/MBc). (4)

The other two mesons’ wave functions read

ΦD(x, b) =
i√
2Nc

γ5(�P2 + MD)φD(x, b), (5)

Φπ(x) =
i√
2Nc

[γ5 �P3φπ(x) + M0πγ5φ
p
π(x)

+ M0πγ5(/n−/n+ − 1)φσ
π(x)] , (6)

where Nc = 3 is color degree of freedom, and
M0π = M2

π/(mu + md), n− = (0, 1,0T) ∝ P3, n+ =
(1, 0,0T), ε0123 = 1.

The momentum fraction of the light quark in the three
mesons can be defined by x1 = kc/PBc , x2 = k+

2 /P+
2 , x3 =

k−
3 /P−

3 . In the Bc meson, there is also another relation
between x1 and rb = Mb/MBc

: x1 + rb = 1.

3.2 Effective Hamiltonian

The effective Hamiltonian for the flavor-changing b → d
transition is given by [11]

Heff =
GF√

2

∑
q=u,c

Vq

[
C1(µ)O(q)

1 (µ) + C2(µ)O(q)
2 (µ)

+
10∑

i=3

Ci(µ)Oi(µ)

]
, (7)

with the Cabibbo–Kobayashi–Maskawa (CKM) matrix el-
ements Vq = VqdV

∗
qb and the operators

O
(q)
1 = (d̄iqj)V −A(q̄jbi)V −A,

O
(q)
2 = (d̄iqi)V −A(q̄jbj)V −A,

O3 = (d̄ibi)V −A

∑
q

(q̄jqj)V −A,

O4 = (d̄ibj)V −A

∑
q

(q̄jqi)V −A,

O5 = (d̄ibi)V −A

∑
q

(q̄jqj)V +A,

O6 = (d̄ibj)V −A

∑
q

(q̄jqi)V +A,

O7 =
3
2

(d̄ibi)V −A

∑
q

eq(q̄jqj)V +A,

O8 =
3
2

(d̄ibj)V −A

∑
q

eq(q̄jqi)V +A,

O9 =
3
2

(d̄ibi)V −A

∑
q

eq(q̄jqj)V −A,

O10 =
3
2

(d̄ibj)V −A

∑
q

eq(q̄jqi)V −A, (8)

with i and j being the color indices. Using the unitary con-
dition, the CKM matrix elements for the penguin operators
O3–O10 can also be expressed as Vu + Vc = −Vt.

The Bc → Dπ decay rates have the expressions

Γ =
G2

FM3
Bc

32π
|A|2. (9)

The decay amplitude A of the Bc → Dπ process from all
the diagrams can be expressed as follows:

AD0π+ = Vu

(
fπFT

e1 + MT
e1

)
+ Vc

(
fBcF

T
a + MT

a
)

− Vt

(
fπFP1

e1 + fπFP3
e1 + MP1

e1 + MP2
e1 (10)

+ fBc
FP1

a + fBc
FP3

a + MP1
a + MP2

a
)
,

√
2AD+π0 = Vu

(
fπFT

e2 + MT
e2

) − Vc

(
fBcF

T
a + MT

a
)

− Vt

(
fπFP1

e2 + fπFP2
e2 + fπFP3

e2

+ MP1
e2 + MP2

e2 + MP3
e2 − fBcF

P1
a

− fBcF
P3
a − MP1

a − MP2
a

)
, (11)

where F (M) denotes factorizable (non-factorizable) am-
plitudes, the subscript e(a) denotes the emission (annihi-
lation) diagrams. The subscript 1(2) denotes the process
B+

c → D0π+ (B+
c → D+π0), the superscript T(P) de-

notes amplitudes from the tree (penguin) operators, and
fBc (fπ) is the Bc (π) meson decay constant. The detailed
expressions of these amplitudes are shown in Appendix A.

From (10) and (11), we can see that unlike B±, B0(B̄0)
decays, we have three kinds of decay amplitudes with differ-
ent weak and strong phases: penguin contributions propor-
tional to Vt and two kinds of tree contributions proportional
to Vc and Vu, respectively. The interference between them
gives a large direct CP -violation which will be shown later.

As stated in the introduction, the two diagrams in Fig. 1
give the contribution for theBc → D transition form factor,
which is defined by

〈D|dγµb|Bc〉 = F+
(
pµ

Bc
+ pµ

D

)
+ F−

(
pµ

Bc
− pµ

D

)
. (12)

We calculate F+ in PQCD and get

F+ =
4fB√
2Nc

πCF M2
Bc

∫ 1

0
dx2

∫ ∞

0
b2db2 φD(x2, b2)

×
{[

2rb − x2 − (rb − 2x2)r2 + (x2 − 2rb)r2
2
]

×αs

(
t(1)e

)
SD

(
t(1)e

)
He1 (αe, βe1, b2)

+ [(1 − x1)r2(2 − r2)]
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Table 1. Form factor F+ in the different values of ωD

ωD 0.40 GeV 0.45 GeV 0.50 GeV

F+ 0.154 0.169 0.174

×αs

(
t(2)e

)
SD

(
t(2)e

)
He2 (αe, βe2, b2)

}
, (13)

which is an expression similar to FT
e1 without Wilson coeffi-

cients in the appendix. The numerical results of F+ can be
found in Table 1: the form factor F+ is 0.169+0.05

−0.15 including
the uncertainty of ωD, which is comparable with previous
calculations [6, 12].

3.3 Input parameters

For the D meson wave function, two types of D meson
wave function are usually used in the literature: one is [9]

φD (x) =
3√
2Nc

fDx(1 − x){1 + aD (1 − 2x)}

× exp
[
− 1

2
(ωDb)2

]
, (14)

in which the last term, exp
[
− 1

2 (ωDb)2
]
, represents the

kT distribution; the other one [13,14] is

φD(x) =
3√
2Nc

fDx(1 − x){1 + aD(1 − 2x)}, (15)

which is fitted fromthemeasuredB → D�ν decay spectrum
at large recoil. The absence of the last term in the (14) is
due to the insufficiency of the experimental data.

Though the wave function of the D meson turns out to
be more complicated when it runs at a velocity of about
0.6c, the light quark’s momentum must be less than p+

2 /2
because the mass of the c quark is by far larger than ΛQCD:
Mc � ΛQCD, so the wave function of D meson should be
strongly suppressed in the region x2 > 1/2 and even the
kT contributions are considered. In order to satisfy the
above condition, we give up the D wave functions above
and construct a new wave function, which also fits the
measured B → Dlν decay spectrum at large recoil:

φD(x, b) = ND [x(1 − x)]2

× exp

[
− 1

2

(
xMD

ωD

)2

− 1
2

(ωD)2 b2

]
, (16)

where ND is a normalization constant to let∫ 1

0
φD(x, b) =

fD

2
√

2Nc

. (17)

The behavior of the whole D meson wave function can be
seen in Fig. 5. Our choice of the third case has a broad peak
at the small x side, which characterizes the mass difference
of mc and md.

x

φ D
(x

)

Fig. 5. D meson wave functions: the dashed line for case 1 and
2, the solid line for case 3

The π wave functions [15, 16] we adopt are calculated
by QCD sum rules and shown in Appendix B.

The other input parameters are listed below [17,18]:

fBc
= 480 MeV, fD = 240 MeV, fπ = 131 MeV,

ωD = 0.45 GeV, M0π = 1.60 GeV, aD = 0.3,

MBc
= 6.4 GeV, Mb = 4.8 GeV,

MD = 1.869 GeV, Mt = 170 GeV,

MW = 80.4 GeV, τB± = 0.46 × 10−12 s,

GF = 1.16639 × 10−5 GeV−2. (18)

The CKM parameters used in the paper are∣∣∣∣ Vub

Vcb

∣∣∣∣ = 0.085 ± 0.020, (19)

|Vcb| = 0.039 ± 0.002, (20)

R =
∣∣∣∣ Vu

Vc

∣∣∣∣ =
1 − λ2/2

λ

∣∣∣∣ Vub

Vcb

∣∣∣∣ . (21)

The CKM angle φ3 = γ is left as a free parameter to discuss
CP -violation, defined by

γ = arg
(

−Vu

Vc

)
= arg (V ∗

ub) . (22)

3.4 Numerical analysis

We fix γ = 55◦ to discuss the central value of the numerical
results first.

Both process B+
c → D0π+ and B+

c → D+π0 are tree-
dominated. The branching ratios and main contributions
are give in Table 2, from which we can see that the branch-
ing ratio of B+

c → D0π+ is much larger than that of
B+

c → D+π0. Though they are both a tree-dominated
process, their branching ratios and percentage of differ-
ent topologies in the whole process are obviously different.
Because the annihilation topology gives the same contri-
butions to both processes, despite a

√
2 factor, the differ-

ence only comes from the emission topology. In the process
B+

c → D0π+, contributions from the factorizable emission
topology dominate the whole tree contributions for the
large Wilson coefficients C2 + C1/Nc in (A.13), which oc-
cupy about 93% of the total even when the effect of CKM
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Table 2. Branch ratios and main contributions from tree op-
erators (10−3 GeV)

B+
c → D0π+ B+

c → D+π0

fπFT
e 23.0 0.763

MT
e −0.379 + 0.863i 0.854 − 2.16i

fBFT
a −3.35 + 5.49i −3.35 + 5.49i

MT
a 2.52 − 1.92i 2.52 − 1.92i

∣
∣
∣
∣

P

Te

∣
∣
∣
∣

10% 40%

Br 0.978 × 10−6 0.196 × 10−6

rπ

B
r(

B
c 

→
 D

0 π+
)×

10
6

rπ

B
r(

B
c 

→
 D

+
π0 )×

10
6

Fig. 6. The correlation between Br(Bc → Dπ) and rπ

matrix element is considered (|λu| < |λc|). On the contrary,
contributions from the factorizable emission topology in the
process B+

c → D+π0 are suppressed because the Wilson
coefficients C1 and C2/Nc in (A.14) cancel each other ap-
proximately. From Table 2 we also find that contributions
from the factorizable annihilation topology are at the same
order of non-factorizable emission topology.

The ratio of the penguin contributions over the tree
contributions is about 10% in the process B+

c → D0π+

and about 40% in the process B+
c → D+π0 (Table 2). The

reason for the difference is the term 2rπφp
π(x3) in (A.4) from

the O6, O8 operator contributions, having no factors like
x3 to suppress its integral value in the end-point region and
leading to large enhancement compared with other penguin
contributions. But the most important reason is that the
tree contribution is suppressed in the process B+

c → D+π0

due to the small Wilson coefficients C1 + C2/3 but is not
suppressed in the process B+

c → D0π+. The O6, O8 contri-
butions also affect the dependence behavior of the branch-
ing ratio and the direct CP -asymmetry on the CKM angle
γ in the process B±

c → D±π0, which will be discussed in
the following.

The correlation between Br(B+
c → Dπ) and rπ is shown

in Fig. 6. Because twist-3 terms of the π wave function

Table 3. Branch ratios in the unit 10−6 for different ωD

B+
c → D0π+ B+

c → D+π0

ωD = 0.40 GeV 1.03 0.128

ωD = 0.45 GeV 0.978 0.196

ωD = 0.50 GeV 1.19 0.199

do not contribute to the form factor ((A.1) and (A.2)),
the variation of rπ affects the process B+

c → D+π0 more
heavily than the process B+

c → D0π+, where the latter
dominated by the Bc → D form factor diagrams. When
rπ = 1.4, the twist-3 contributions are about 25% in the
process B+

c → D0π+. In the process B+
c → D+π0, the

twist-3 contributions with a relative minus sign cancel some
of the twist-2 contributions. When rπ = 1.4, the branching
ratio of B+

c → D+π0 is about four times the branching
ratio with only twist-2 contributions. When rπ = 0, the
twist-3 contributions vanish and only the contributions
from twist-2 terms in the π wave function are left. The
corresponding branching ratio is reduced to 0.95×10−6 in
the process B+

c → D0π+ and 0.092 × 10−6 in the process
B+

c → D+π0 respectively.
As the only free parameter with a large uncertainty,

the value of ωD is the key point to the whole prediction
in the calculations of Bc → Dπ. In Table 3 we discuss
the branching ratio in three groups of different ω values:
ωD = 0.40 GeV, ωD = 0.45 GeV and ωD = 0.50 GeV,
from which we see that the variation of ωD affects the
process B+

c → D0π+ slightly, but affects the process B+
c →

D+π0 heavily.
According to the CKM parametrization shown in (19)–

(22), the decay amplitudes of Bc → Dπ can be written as

MDπ = VuTu + VcTc − VtP

= Vu(Tu + P )
[
1 − 1

R

Tc + P

Tu + P
e−iγ

]

≡ Vu(Tu + P )
[
1 − zei(−γ+δ)

]
, (23)

where z = 1
R

∣∣∣ Tc+P
Tu+P

∣∣∣ =
∣∣∣ Vc

Vu

∣∣∣ ∣∣∣ Tc+P
Tu+P

∣∣∣ and the strong phase

δ = arg
(
Tc + P

Tu
+ P

)
, from our PQCD calculation the

numerical value of which is 0.28 and 123◦ for B+
c → D0π+,

respectively. The emission topology in this channel is only
about one time larger than the annihilation topology due
to the small CKM factor |Vu/Vc|.

The corresponding conjugate decay of B+
c → Dπ reads

MB−
c →D̄π−(0) = V ∗

u (Tu + P )
[
1 − zei(γ+δ)

]
, (24)

and the averaged branching ratio for B±
c →D0(D̄0)π± reads

Br =
1
2

(|M |2 + |M̄ |2) (25)

=
1
2

|Vu(Tu + P )|2 [
1 − 2z cos γ cos δ + z2] ,

which is a function of the CKM angle γ. Its numerical result
depends on γ significantly: the larger γ, the smaller the
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γ

B
r(

B
c 

→
 D

0 π+
)×

10
6

Fig. 7. The correlation between the averaged branching ratio
and γ in the process B±

c → D0π±

γ

A
cp

(B
c 

→
 D

π)

Fig. 8. The correlation between the direct CP -violation and
γ, the solid line for B±

c → D±π0 and the dashed line for
B±

c → D0(D̄0)π±

averaged branching ratio, because cos δ < 0. The explicit
correlation between the averaged branching ratio B±

c →
D0(D̄0)π± and γ is shown in Fig. 7.

The direct CP -violation Adir
CP is defined as

Adir
CP (26)

=

∣∣M(B+
c → D0(+)π+(0)

∣∣2 − ∣∣M(B−
c → D0(−)π−(0)

∣∣2∣∣M(B+
c → D0(+)π+(0)

∣∣2 +
∣∣M(B−

c → D0(−)π−(0)
∣∣2 .

There are two different tree contributions and one kind
of penguin contribution with different strong and weak
phases, which will contribute to the CP -asymmetry. Using
(23) and (24), Adir

CP can be simplified as

Adir
CP = − 2z sin δ sin γ

1 − 2z cos δ cos γ + z2 , (27)

which is proportional to sin γ approximately. This is shown
in Fig. 8. When γ = 55◦, the direct CP -asymmetry is about
−50% in the process B+

c → D0π+.
The Bc → D+π0 process becomes a little more compli-

cated: the tree contributions from the emission topology
MT

e (in Table 1) is suppressed due to the small Wilson
coefficients C1 + C2/3. In this case, the three different
contributions with different weak and strong phases (two
tree contributions and one penguin contribution) are at
the same order of magnitude. We can still use (25) and
(27) to get the behavior of the branching ratio and the
direct CP -asymmetry on γ. Now the numerical values of
z and δ are 3.1 and −20◦ respectively. Different from the
averaged branching ratio of the process Bc → D+π0, the
averaged branching ratio of the process Bc → D0π+ be-
comes smaller when γ becomes larger because cos δ > 0.

γ

B
r(

B
c 

→
 D

+
π0 )×

10
6

Fig. 9. The correlation between the averaged branching ratio
and γ in the process B±

c → D±π0

The behavior of the branching ratio and the direct CP -
asymmetry does not change much, but the shape of the
former turns sharper. In one word, the branching ratios of
B±

c → D±π0 shown in Fig. 9 are more sensitive to the value
of γ, which is quite different from the case for B±

c → D0π±,
but the direct CP -asymmetry of B±

c → D±π0 shown in
Fig. 8 does not change greatly because the large uncertainty
from γ cancels in the ratio of the direct CP -asymmetry.
When γ = 55◦, the direct CP -asymmetry is about 25%
in the process B±

c → D±π0. As pointed out in [19], the
CP -asymmetry is sensitive to the next-to-leading order
contribution, which is more complicated; the result shown
here should be taken carefully.

4 Conclusion

In this paper we discuss the process Bc → D0π+ and
Bc → D+π0 in thePQCDapproach and get their branching
ratios 1.03+0.16

−0.04 × 10−6 and 1.96+0.03
−0.68 × 10−7 respectively.

We also predict the possible large direct CP -asymmetry
in the two processes Adir

CP (B±
c → D0π±) ≈ −50% and

Adir
CP (B±

c → D±π0) ≈ 25% when γ = 55◦. The possible
theoretical uncertainty is also analyzed. We hope it can be
tested in the coming experiments at Tevatron, LHC and
the super-B factory.
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Appendix A: Contributions from all diagrams

1. Contributions from factorizable diagrams

All diagrams are sorted into two kinds: emission topology
and annihilation topology shown in Figs. 1 and 3, and Fig. 2
and 4. The factorizable tree contributions from emission
topology read

F
T(P1,P2)
ei

=
4fB√
2Nc

πCF M2
Bc

∫ 1

0
dx2

∫ ∞

0
b2db2 φD(x2, b2)
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×
{[

2rb − x2 − (rb − 2x2)r2 + (x2 − 2rb)r2
2
]

×E
T(P1,P2)
ei (t(1)e )He1(αe, βe1, b2)

+ [(1 − x1)r2(2 − r2)]

×E
T(P1,P2)
ei (t(2)e )He2(αe, βe2, b2)

}
, (A.1)

FP3
ei

= − 8fB√
2Nc

rKπCF M2
Bc

∫ 1

0
dx2

∫ ∞

0
b2db2 φD(x2, b2)

×
{[−2 + rb + (1 − 4rb + x2)r2 + (rb − 2x2 + 2)r2

2
]

×EP3
ei (t(1)e )He1(αe, βe1, b2)

− [
x1 + 2(1 − 2x1)r2 − (2 − x1)r2

2
]

×EP3
ei (t(2)e )He2(αe, βe2, b2)

}
. (A.2)

Because b and c are both massive quarks, there is no
collinear divergence in the Bc → D transition, so the
threshold resummation need not be considered. In all the
expressions, T denotes the contributions from tree opera-
tors, P1 denotes the penguin contributions with the Dirac
structure (V −A)⊗(V −A), P2 denotes the penguin contri-
butions with the Dirac structure (V −A)⊗(V +A), and P3
denotes the penguin contributions with the Dirac structure
(S −P )⊗ (S +P ); the subscript e(a) denotes the factoriz-
able emission (annihilation) diagrams, the subscript n (na)
denotes the non-factorizable emission (annihilation) dia-
grams.

The factorizable tree contributions from the annihila-
tion topology read

FT(P1)
a

= 8πCF M2
Bc

∫ 1

0
dx2dx3

∫ ∞

0
b2db2b3db3 φD(x2, b2)

×
{[(

x3 − (1 + 2x3)r2
2
)
φπ(x3)

+r2rπ ((1 + 2x3)φp
π(x3) − (1 − 2x3)φσ

π(x3))
]

×ET(P1)
a (t(1)a )Ha(αa, βa1, b2, b3)St(x3)

− [
x2(1 − r2

2)φπ(x3) + 2r2rπ(1 + x2)φp
π(x3)

]
×ET(P1)

a (t(2)a )Ha(αa, βa2, b3, b2)St(x2)
}

, (A.3)

FP3
a

= −16πCF M2
Bc

∫ 1

0
dx2dx3

∫ ∞

0
b2db2b3db3 φD(x2, b2)

×
{[−r2φπ(x3) + rπ

(−x3 + (2 + x3)r2
2
)
φp

π

+ rπx3(1 − r2
2)φ

σ
π(x3)

]
×EP3

a (t(1)a )Ha(αa, βa2, b2, b3)St(x3)

− [
x2r2φπ(x3) + 2rπ

(
1 − (1 − x2)r2

2
)
φp

π(x3)
]

×EP3
a (t(2)a )Ha(αa, βa2, b3, b2)St(x2)

}
, (A.4)

where the factor St(x) is the jet function from the threshold
resummation [20]

St(x) =
21+2cΓ (3/2 + c)√

πΓ (1 + c)
[x(1 − x)]c, c = 0.3. (A.5)

The factors E
T (P )
i (t) contain the Wilson coefficients a(t)

at scale t and the evolution from t to the factorization scale
1/b in the Sudakov factors S(t):

E
T(Pi)
ej (t) = αs(t)a

T(Pi)
ej (t) SD(t),

ET(Pi)
a (t) = αs(t)a

T(Pi)
e1 (t) SD(t)Sπ(t), (A.6)

where SD(t), Sπ(t), the Sudakov factors, are defined as

SD(t) = s(x2P
+
2 , b2) + 2

∫ t

1/b2

dµ

µ
γq(µ), (A.7)

Sπ(t) = s(x3P
−
3 , b3) + s((1 − x3)P−

3 , b3)

+2
∫ t

1/b3

dµ

µ
γq(µ), (A.8)

and s(Q, b) is given by [21]

s(Q, b) (A.9)

=
∫ Q

1/b

dµ

µ

[{
2
3

(2γE − 1 − ln 2) + CF ln
Q

µ

}
αs(µ)

π

+
{

67
9

− π2

3
− 10

27
nf +

2
3

β0 ln
eγE

2

} (
αs(µ)

π

)2

ln
Q

µ

]
,

where the Euler constant γE = 0.57722 . . ., and γq = −αs/π
is the quark anomalous dimension.

The hard functions H are

He1(α, β, b) =
K0(αb) − K0(βb)

β2 − α2 , (A.10)

He2(α, β, b) =
1

(1 − x1)(x1 − r2
2)

K0(αb), (A.11)

Ha(α, β, b1, b2)

= [θ(b1 − b2)K0(αb1)I0(αb2) (A.12)

+ θ(b2 − b1)K0(αb2)I0(αb1)]K0(βb2),

where K0, I0, H0 and J0 are the Bessel functions of order
0. It is implied that the transformed Bessel functions K0
and I0 become the corresponding Bessel functions with real
variable when their variables are complex.

The Wilson coefficients ai read

aT
e1(t) = C2 +

C1

Nc
, (A.13)

aP1
e1 (t) = C4 +

C3

Nc
+ C10 +

C9

Nc
,
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aP3
e1 (t) =

(
C6 +

C5

Nc

)
+

(
C8 +

C7

Nc

)
,

aT
e2(t) = C1 +

C2

Nc
, (A.14)

aP1
e2 (t) = −

(
C4 +

C3

Nc

)
+

3
2

(
C9 +

C10

Nc

)

+
1
2

(
C10 +

C9

Nc

)
,

aP2
e2 (t) = − 3

2

(
C7 +

C8

Nc

)
, (A.15)

aP3
e2 (t) = −

(
C6 +

C5

Nc

)
+

1
2

(
C8 +

C7

Nc

)
.

All the Wilson coefficients Ci above should be evaluated
at the appropriate scale t. The hard scale t is chosen as
the maximum of the virtuality of the internal momentum
transition in the hard amplitudes, including 1/bi:

t(1)e = max (|αe|, |βe1|, 1/b2) ,

t(2)e = max (|αe|, |βe2|, 1/b2) ,

t(1)a = max (|βa1|, 1/b2, 1/b3) ,

t(1)a = max (|βa2|, 1/b2, 1/b3) ,

where

α2
e = (1 − x1 − x2)(x1 − r2

2)M
2
Bc

,

β2
e1 = [r2

b − x2(1 − r2
2)]M

2
Bc

,

β2
e2 = (1 − x1)(x1 − r2

2)M
2
Bc

,

α2
a = −x2x3M

2
Bc

(1 − r2
2),

β2
a1 = −x3M

2
Bc

(1 − r2
2), (A.16)

β2
a2 = −x2M

2
Bc

(1 − r2
2).

2. Contributions from non-factorizable diagrams

Different from factorizable diagrams, non-factorizable di-
agrams include the convolution of all three wave functions
and, of course, the convolution of Sudakov factors. Their
amplitudes are

M
T(P1)
ei

=
8

Nc
πCF fBM2

Bc

∫ 1

0
dx2dx3

∫ ∞

0
b2db2b3db3

×φD(x2, b2)φπ(x3)

×
{[

1 − x1 − x3 − (1 − x1 − x2)r2 − (x2 − 2x3)r2
2
]

×E
T(P1)
ne i (t(1)a ) Ha(αne, βne1, b2, b3)

+ [(2x1 + x2 − x3 − 1) + (1 − x1 − x2)r2

+ (−2x1 − x2 + 2x3)r2
2
]

×E
T(P1)
ne i (t(2)a ) Ha(αne, βne2, b2, b3)

}
, (A.17)

MP2
ei

=
8

Nc
πrπCF fBM2

Bc

∫ 1

0
dx2dx3

∫ ∞

0
b2db2b3db3

×φD(x2, b2)

×
{

[(1 − x1 − x3 + (2 − 2x1 − x2 − x3)r2

+ (1 − x1 − x2 + x3)r2
2
)
φp

π(x3)

+ (1 − x1 − x3 + (x2 − x3)r2

+ (−1 + x1 + x2 + x3)r2
2
)
φσ

π(x3)
]

×EP2
ne i(t

(1)
a ) Ha(αne, βne1, b2, b3)

+ [(x1 − x3 + (2x1 + x2 − x3 − 1)r2

+ (x1 + x2 + x3 − 2)r2
2
)
φp

π(x3)

+ (−x1 + x3 + (x2 + x3 − 1)r2

+ (x1 + x2 − x3)r2
2
)
φσ

π(x3)
]

×EP2
ne i(t

(2)
a ) Ha(αne, βne2, b2, b3)

}
, (A.18)

MP3
ei

=
8

Nc
πCF fBM2

Bc

∫ 1

0
dx2dx3

∫ ∞

0
b2db2b3db3

×φD(x2, b2)φπ(x3)

×
{

[−2 + 2x1 + x2 + x3 + (1 − x1 − x2)r2

+ (2 − 2x1 − x2 − 2x3)r2
2
]

×EP3
ne i(t

(1)
a ) Ha(αne, βne1, b2, b3)

+
[−x1 + x3 + (x1 + x2 − 1)r2 − (x2 + 2x3 − 2)r2

2
]

×EP3
ne i(t

(2)
a ) Ha(αne, βne2, b2, b3)

}
, (A.19)

MT(P1)
a

=
8

Nc
πCF fBM2

Bc

∫ 1

0
dx2dx3

∫ ∞

0
b2db2b3db3φD(x2, b2)

×
{

[(−x1 + x2 + r2)φπ(x3)

+(−2x1 + x2 + x3 + 4r2)r2rπφp
π(x3)

+ (x2 − x3)r2rπφσ
π(x3)]

×E
T(P1)
ne1 (t(1)na ) Hna(αna, βna1, b2)

+
[(

1 − x1 − x3 − rb + (−x2 + 2x3 + rb)r2
2

)
φπ(x3)

+(2 − 2x1 − x2 − x3 − 4rb)r2rπφp
π(x3)

+ (x2 − x3)r2rπφσ
π(x3)]

×E
T(P1)
ne1 (t(2)na ) Hna(αna, βna2, b2)

}
, (A.20)
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MP2
a

= − 8
Nc

πCF fBM2
Bc

∫ 1

0
dx2dx3

∫ ∞

0
b2db2b3db3

×φD(x2, b2)
{

[(−x1 + x2 − r2)r2 φπ(x3)

+
(
x1 − x3 + r2 + (x1 − x2 + x3)r2

2
)
rπφp

π(x3)

+
(
x1 + x2 − x3 + (−x1 + x2 + x3)r2

2
)
rπ φσ

π(x3)
]

×EP2
ne1(t

(1)
na ) Hna(αna, βna1, b2)

− [(−1 − rb + x1 + x2)r2φπ(x3)

+
(
1 + rb − x1 − x3 + (1 + rb − x1 − x2 + x3)r2

2
)

×rπ φp
π(x3)

+
(
1 + rb − x1 − x3 + (−1 − rb + x1 + x2 + x3)r2

2
)

× rπφσ
π(x3)] EP2

ne1(t
(2)
na ) Hna(αna, βna2, b2)

}
, (A.21)

where the hard kernel Hna is defined as

Hna(α, β, b) =
K0(αb) − K0(βb)

β2 − α2 , (A.22)

and the factor E(t) turns into

E
T(Pi)
nej (t) = αs(t)a

T(Pi)
nej (t) SD(t)Sπ(t), (A.23)

where the Wilson coefficients a read

aT
ne1(t) = C1,

aP1
ne1(t) = C3 + C9,

aP2
ne1(t) = C5 + C7,

aT
ne2(t) = C2,

aP1
ne2(t) = −C3 +

1
2

C9 +
3
2

C10,

aP2
ne2(t) = −C5 +

1
2

C7,

aP3
ne2(t) =

3
2

C8. (A.24)

The hard scale t is chosen as the maximum of the vir-
tuality of the internal momentum transition in the hard
amplitudes, including 1/bi:

t(1)e = max (|αne|, |βne1|, 1/b2, 1/b3) ,

t(2)e = max (|αne|, |βne2|, 1/b2, 1/b3) ,

t(1)a = max (|αna|, |βna1|, 1/b2) ,

t(1)a = max (|αna|, |βna2|, 1/b2) ,

where

α2
e = (1 − x1 − x2)(x1 − r2

2)M
2
Bc

,

βne1 = −(1 − x1 − x2)

× [
(1 − x3)(1 − r2

2) − x1 + r2
2
]
M2

Bc
,

βne2 = −(1 − x1 − x2)
[
x3(1 − r2

2) − x1 + r2
2
]
M2

Bc
,

α2
a = −x2x3M

2
Bc

(1 − r2
2),

βna1 = x1
[
x2 + x3(1 − r2

2)
]
M2

Bc
,

βna1 = (1 − x1)
[
x2 + x3(1 − r2

2)
]
M2

Bc
. (A.25)

Appendix B: The π meson wave functions

The different distribution amplitudes ofπ meson wave func-
tions are given as [15,16]

φπ(x) =
3√
6

fπx(1 − x) (A.1)

×
[
1 + 0.44C

3/2
2 (2x − 1) + 0.25C

3/2
4 (2x − 1)

]
,

φp
π(x) =

fπ

2
√

6
(A.2)

×
[
1 + 0.43C

1/2
2 (2x − 1) + 0.09C

1/2
4 (2x − 1)

]
,

φσ
π(x) =

fπ

2
√

6
(1 − 2x)

[
1 + 0.55(10x2 − 10x + 1)

]
,

(A.3)

with the Gegenbauer polynomials

C
1/2
2 (t) =

1
2

(3t2 − 1), C
1/2
4 (t) =

1
8

(35t4 − 30t2 + 3),

C
3/2
2 (t) =

3
2

(5t2 − 1), C
3/2
4 (t) =

15
8

(21t4 − 14t2 + 1).

(A.4)
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